Equipo Azul

Equipo Azul

martes, 2 de noviembre de 2010

CAMPO ELÉCTRICO

  • Definición física de Campo
Las cargas eléctricas no precisan de ningún medio material para ejercer su influencia sobre otras, de ahí que las fuerzas eléctricas sean consideradas fuerzas de acción a distancia. Cuando en la naturaleza se da una situación de este estilo, se recurre a la idea de campo para facilitar la descripción en términos físicos de la influencia que uno o más cuerpos ejercen sobre el espacio que les rodea.


La noción física de campo se corresponde con la de un espacio dotado de propiedades medibles. En el caso de que se trate de un campo de fuerzas éste viene a ser aquella región del espacio en donde se dejan sentir los efectos de fuerzas a distancia. Así, la influencia gravitatoria sobre el espacio que rodea la Tierra se hace visible cuando en cualquiera de sus puntos se sitúa, a modo de detector, un cuerpo de prueba y se mide su peso, es decir, la fuerza con que la Tierra lo atrae. Dicha influencia gravitatoria se conoce como campo gravitatorio terrestre. De un modo análogo la física introduce la noción de campo magnético y también la de campo eléctrico o electrostático.
  • El campo eléctrico


El campo eléctrico asociado a una carga aislada o a un conjunto de cargas es aquella región del espacio en donde se dejan sentir sus efectos. Así, si en un punto cualquiera del espacio en donde está definido un campo eléctrico se coloca una carga de prueba o carga testigo, se observará la aparición de fuerzas eléctricas, es decir, de atracciones o de repulsiones sobre ella.







  • Intensidad de campo eléctrico.
       
Para poder interpretar cómo es la intensidad del campo eléctrico producido por una carga eléctrica, se emplea una carga positiva (por convención) de valor muy pequeño, llamada carga de prueba, de esta manera sus efectos, debido al campo eléctrico, se pueden despreciar
Si la carga de prueba recibe una fuerza de origen eléctrico, diremos que en ese punto del espacio existe un campo eléctrico, cuya intensidad E es igual a la relación dada entre la fuerza F y el valor de dicha carga de prueba q. Por lo tanto:

                               E = F
                                 Q

intensidad del campo eléctrico en Newtons/coulomb (N/C).
fuerza que recibe la carga de prueba en Newtons (N) o dinas.
valor de la carga de prueba en Coulomb (C)

La intensidad del campo eléctrico E, es una magnitud vectorial, toda vez que la fuerza F también lo es, por ello los campos eléctricos se suman vectorialmente. Así pues, la dirección y el sentido del vector representativo de la intensidad del campo eléctrico en un punto será igual a la de la fuerza que actúa en ese punto sobre la carga de prueba, la cual como señalamos es positiva por convención. 
Si se desea calcular la intensidad del campo eléctrico E a una determinada distancia r de una carga q se considera que una carga de prueba q1 colocada a dicha distancia recibe una fuerza F debida a q y de acuerdo con la Ley de Coulomb se calcula con la expresión siguiente:

F = k Q q1    (1)
         r2

     Como E = F   (2)
             q1

     Sustituyendo la ecuación 1 en 2 tenemos:

       kq q1
E =    r2____      (3)
          q1.

Donde:    E = kq          (4)
                     r2.




  • Líneas de campo eléctrico

Son líneas imaginarias que describen, si los hubiere, los cambios en dirección de las fuerzas al pasar de un punto a otro. En el caso del campo eléctrico, puesto que tiene magnitud y sentido, se trata de una cantidad vectorial, y las líneas de fuerza o líneas de campo eléctrico indican las trayectorias que seguirían las partículas positivas si se las abandonase libremente a la influencia de las fuerzas del campo.
Una carga puntual positiva dará lugar a un mapa de líneas de fuerza radiales, pues las fuerzas eléctricas actúan siempre en la dirección de la línea que une a las cargas interactuantes, y dirigidas hacia fuera porque las cargas móviles positivas se desplazarían en ese sentido (fuerzas repulsivas). En el caso del campo debido a una carga puntual negativa el mapa de líneas de fuerza sería análogo, pero dirigidas hacia la carga central. Como consecuencia de lo anterior, en el caso de los campos debidos a varias cargas las líneas de fuerza nacen siempre de las cargas positivas y mueren en las negativas. Se dice por ello que las primeras son «manantiales» y las segundas «sumideros» de líneas de fuerza.






  • Permisividad

La permitividad, tomada en función de la frecuencia, puede tomar valores reales o complejos. Generalmente no es una constante ya que puede variar con la posición en el medio, la frecuencia del campo aplicado, la humedad o la temperatura, entre otros parámetros. En un medio no lineal, la permitividad puede depender de la magnitud del campo eléctrico.
La permitividad (o impropiamente constante dieléctrica) es una constante física que describe cómo un campo eléctrico afecta y es afectado por un medio.


La permitividad del vacío  Eo  es 8,8541878176x10-12 F/m.
La permitividad está determinada por la tendencia de un material a polarizarse ante la aplicación de un campo eléctrico y de esa forma anular parcialmente el campo interno del material. Está directamente relacionada con la susceptibilidad eléctrica. Por ejemplo, en un condensador una alta permitividad hace que la misma cantidad de carga eléctrica se almacene con un campo eléctrico menor y, por ende, a un potencial menor, llevando a una mayor capacitancia del mismo.

  • Densidad de carga

Aunque la carga eléctrica es una magnitud cuantizada, cualquier volumen contiene un número tan elevado de partículas eléctricas (electrones o protones) que podemos considerar la carga eléctrica como una magnitud continua.

A la carga eléctrica por unidad de volumen r, se le llama densidad de carga volúmica:

que se mide en el S.I. en C/m3



A la carga eléctrica por unidad de superficie s, se le llama densidad de carga superficial:

que se mide en el S.I. en C/m2



A la carga eléctrica por unidad de longitud l, se le llama densidad de carga lineal:
que se mide en el S.I. en C/m


  • Teorema de Gauss
El teorema de Gauss afirma que el flujo del campo eléctrico a través de una superficie cerrada es igual al cociente entre la carga que hay en el interior de dicha superficie dividido entre e0.

Para una línea indefinida cargada, la aplicación del teorema de Gauss requiere los siguientes pasos:
1.-A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico.
La dirección del campo es radial y perpendicular a la línea cargada
2.-Elegir una superficie cerrada apropiada para calcular el flujo
Tomamos como superficie cerrada, un cilindro de radio r y longitud L.
·         Flujo a través de las bases del cilindro: el campo E y el vector superficie S1 o S2 forman 90º, luego el flujo es cero.
·         Flujo a través de la superficie lateral del cilindro: el campo E es paralelo al vector superficie dS. El campo eléctrico E es constante en todos los puntos de la superficie lateral,


El flujo total es, 2p rL
3. Determinar la carga que hay en el interior de la superficie cerrada
La carga que hay en el interior de la superficie cerrada vale q=l L, donde l es la carga por unidad de longitud.
4.-Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico